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Diffraction of water waves by a submerged vertical plate 

By D. V. EVANS 
Department of Mathematics, University of Bristol 

(Received 30 June 1969 and in revised form 27 October 1969) 

A thin vertical plate makes small, simple harmonic rolling oscillations beneath 
the surface of an incompressible, irrotational liquid. The plate is assumed to be 
so wide that the resulting equations may be regarded as two-dimensional. In  
addition, a train of plane waves of frequency equal to the frequency of oscillation 
of the plate, is normalIy incident on the plate. The resulting linearized boundary- 
value problem is solved in closed form for the velocity potential everywhere in 
the fluid and on the plate. Expressions are derived for the first- and second-order 
forces and moments on the plate, and for the wave amplitudes at a large distance 
either side of the plate. Numerical results are obtained for the case of the plate 
held fixed in an incident wave-train. It is shown how these results, in the special 
case when the plate intersects the free surface, agree, with one exception, with 
results obtained by Ursell (1947) and Haskind (1959) for this problem. 

1. Introduction 
The linearized equations describing the generation or scattering of water waves 

by an obstacle do not, in general, permit a closed form solution. There are a few 
exceptions, however, the most notable being when the obstacle is a vertical plate 
or plates and the motion may be regarded as two-dimensional. Thus, Dean (1945) 
first solved the problem of diffraction of waves by a submerged semi-infinite 
vertical barrier which extended to a finite distance beneath the surface. Shortly 
afterwards, Ursell (1947, 1948) considered the diffraction of waves by a finite 
vertical barrier which intersected the free surface, and also the waves produced by 
the rolling motion of such a barrier. A number of people took up various aspects 
of this problem at a later date, including Haskind (1948, 1959), who derived 
expressions in terms of Bessel and related functions for the forces and moments 
on a barrier oscillating in an arbitrary manner in a train of incident waves of the 
same frequency. Two authors, Lewin (1963) and Mei (1966), have considered the 
very general problem of the generation and scattering of waves by an arbitrary 
number of vertical plates; in each case the author considers as a special case 
the surface-piercing barrier of Ursell. 

In  this paper, the problem to be solved is the generation and diffraction of 
waves by a submerged finite vertical plate. This may also be regarded as a special 
case of the theory of Lewin or Mei, but for completeness the theory is derived 
afresh. The plate makes small rolling oscillations in a train of incident waves of 
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the same frequency as the plate oscillations. Expressions are obtained for the 
wave amplitude a t  a distance from the plate, and also for the first- and second- 
order forces and moments acting on the plate. The expressions involve combina- 
tions of various integrals which, in special limiting cases, become either Bessel 
functions or elliptic functions. 

The problem of the oscillating submerged plate in a sta,tionary fluid has been 
discussed by Wehausen (1960, p. 560 et seg.), using a different method from that 
employed here. He assumes that the vertical velocity is zero near the edges of 
the plate and derives the solution by solving in closed form a pair of integral 
equations of airfoil type. He then needs to  specify the circulation around the 
plate in order to  completely determine the solution. The details of the solution 
are omitted. 

Experiments carried out by Keulegan & Carpenter (1958) indicate that the 
parameter nb/D is fundamental in determining the amount of vorticity shed at 
the edges of a submerged body in waves. Here, D is a typical length of the body 
normal to  the direction of the waves, and I is the distance a fluid particle travels 
during a half cycle in the absence of the body. Thus the smaller the value of 
nl/D, the less significant is the eddy formation at the edges of the body. Now the 
fluid particles in deep water describe circles whose maximum radius (at the 
water surface) is equal to the wave amplitude (Lamb 1932, p. 368) so that the 
assumption made in this paper, namely that the flow is irrotational and no 
vortex shedding occurs a t  the edges of the plate, is not unreasonable in terms of 
a theory based on waves of infinitesimal amplitude. 

The results simplify considerably if the plate is assumed to be held fixed in 
a train of incident waves, and computations are limited to  this case. Of particular 
interest is the existence of a mean second-order vertical force acting on the plate, 
although the plate has no thickness. This arises from the singularity in vertical 
velocity a t  either end of the plate, which, from Bernoulli’s equation, produces 
an unbounded negative pressure acting at the ends. By a suitable limiting pro- 
cedure (Sedov 1965, p. 52) ,  this may be shown to yield a finite vertical force a t  
each end, the resultant of which is directed towards the free surface. A similar 
suction force is exerted on a flat plate in aerodynamic theory. See, for example, 
Robinson & Laurmann (1956, p. 126). 

The only other case, in which the forces on a submerged body in waves have 
been determined on the basis of the full linearized theory, seems to  be the work 
of Ogilvie (1963). Thus Ursell(l950) reduced the linearized potential problem of 
water waves passing over a submerged circular cylinder to the solution of an 
infinite system of equations which were well suited to computation. Ogilvie 
computed the first-order oscillatory force for the fixed cylinder and also ex- 
tended Ursell’s work to  consider a cylinder oscillating sinusoidally in otherwise 
calm water, and a neutrally buoyant cylinder which is allowed to respond to the 
first-order oscillatory forces. He showed that knowledge of the first-order poten- 
tial was sufficient to determine the mean second-order forces on the cylinder, 
which he then computed. Similar results are obtained in the present work. 

The paper is divided into sections. The formulation and solution of the mathe- 
matical problem of determining the velocity potential of the flow is dealt with 
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in $5  2-4. I n  0 5 general expressions are presented for the forces and moments on 
the oscillating plate in waves, whilst in fj 6 the plate is assumed to be held fixed in 
waves and the simplifiedresults for the forces and moments are derived. The limit- 
ing case when the upper edge of the plate approaches the free surface is considered 
in 5 7, and a comparison is made between the limiting values of the various ex- 
pressions and the values obtained by Ursell (1947) and Haskind (1948, 1959) 
for the diffraction of waves by a vertical surface-piercing plate. The essential 
results of the paper are given in 3 8, where figures 2-7, illustrating the various 
physical expressions derived in fj 6 for the diffraction of waves by a fixed plate, 
are discussed. 

It should be noted that the solution to the fixed submerged plate was outlined 
by Ursell (1947) as a straightforward extension of the surface-piercing barrier 
problem, although the details were omitted. 

2. Formulation 
Cartesian co-ordinates are chosen with y directed vertically upwards and the 

origin in the free surface. The plate occupies the interval L:  x = 0, - b < y < -a,  
and makes small simple harmonic rolling motions of amplitude 8, and frequency n 
about a fixed point - c which need not be in L. The case of sway is achieved by 
letting c+co and 8,+0 such that c8, remains finite. There is also a train of 
waves incident from x = +co, of amplitude a, and frequency n. 

The resulting fluid motion will also have frequency u, and it is convenient to 
write the total wave potential @(x, y , t )  as 

@(x, y,  t )  = Rej{+(., y )  e-fot} (1)  

and the incident wave potential as 

@&, Y ,  t )  = Rej{+,(x, y) e-fut), 

where j = I/ - 1, and so that 

with incident amplitude obtained from 

K = “‘19, 

1 a@, 
9 at 

q,(x, t )  = - - - = a, cos (Kx + nt ) .  

(3) 

(4) 

The use of the complex number j serves to simplify the time-dependence of 
the velocity potential. Later on the complex variable z = x + iy, where i = J - 1 
will be introduced. This use of two complex numbers need not cause confusion, 
provided the distinct roles of i a n d j  are kept in mind. 

To first order in the amplitude, the velocity of the plate may be written 

on L,  

so that, from (1) ,  a+ 
- = nB,(c+ y )  
ax 

on L. 

28-2 
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In  addition, the usual assumptions of the linearized theory of water waves 
(Wehausen & Laitone 1960) provide the following equations for #(x, y): 

From the form of (1) and (3), a solution $(x, y) is required which behaves in the 
following way for large z: 
AS x-> +a, 

(9) 
while, as x + - m, 
for some constants A*. 

Finally, the velocity components are assumed to be bounded everywhere and 
tend to zero as y + - CQ, except at  the edges of the plate where a mild singularity 
is allowed. 

#(x, y) N A- eKY-iKx (10) 

Thus it is assumed that 

L o ( $  ar o < p < 1  

in the neighbourhood of the point (0, - a )  or (0, - b) .  Here, r is the distance from 
a point in the fluid to either of these points. 

3. Method of solution 
We introduce the complex potential w(z)  = # + i$, z = x + iy, i = ,/ - 1, where 

$(x, y) is the two-dimensional stream function. Then it is convenient to consider 
the conditions satisfied by the so-called reduced potential W ( z )  defined by the 
equation, dw 

W ( Z )  = X + i K w .  

Thus, it is easiIy verified from condition (8) that 

Im, W ( z )  = 0, z real. (13) 

Hence W(z)  may be continued by Schwarz's reflexion principle into y > 0, where 
- 

W(Z) = W(z) .  

Furthermore, W(z)  is a single-valued function outside the circle z = b, and has 
a Laurent expansion of the form 

00 

W ( z )  = c c,z". 
n=-ca 

It is assumed that (9) and (10) may be differentiated once with respect to x or y. 
Then it follows that W ( z )  = O(1) for x - t ~ m .  But dwldx = o(1) as 121 -+a, 
Imx < 0, and hence, using (12) and (14), W(z) = o(x) as 1x1 -+ m for all z, so that 
c, = 0, n > 0, and hence 

in a full neighbourhood of infinity. 
W(2) = O(1) (15) 
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$(O, Y )  = 4 J C Y  + SY2) on L, (16) 

Now since aq5lax = a$/ay, we have by integration, 

where $ has been defined so that the constant of integration is zero. But 

3 4  
ax 

Re, W(x) = - - K$, 

so that from (6) and (16) 
Re, W ( z )  =f(y)  on L, 

where f(y) = aeo(c + y(1- K C )  - 4 ~ 2 ) .  (18) 

Equation (17) is the key to the solution of the problem. Because the plate is 
vertical, it is possible to express the boundary condition on the plate in terms 
of the reduced potential W(x),  and the problem reduces to the determination of 
W ( z )  and then the solution of the simple differential equation (12) for W(x) .  
By introducing a more complicated reduced potential, it is possible to solve a 
variety of problems by this method. For example, John (1948) has applied the 
method to solve, in principle, the problem of the diffraction of water waves by 
a surface-piercing barrier inclined at  an angle 7rr]2n (n integer) to the horizontal. 

Note that from (14), we have 

Re,W(x) =f( - ly l )  onL+L', (19) 

where L' is the interval x = 0, a < y < b, the reflexion of L in the real axis. 

of L'. Thus, 
Finally, W ( z )  may be unbounded near the ends of L, and by reflexion, the ends 

o < p < 1 ,  near z = rt ia, 

with a similar beliaviour near x = k ib. 
The problem of determining the most general function W(x) satisfying (15), 

(19) and (20) is a typical Riemann-Hilbert problem, and the procedure is well 
established. Only the final result will be given; an extensive treatment of such 
problems can be found in Muskhelishvili (1963, p. 261 et sep.). The solution is 
not unique, but depends upon the assumed behaviour near the ends of L and L'. 
We shall choose a solution which is singular at the ends of L and L'. It turns out 
that this is the only choice which allows us to satisfy all the conditions of the 
problem for W(z) .  

Thus it may be shown that 

with B, C real constants with respect to i, satisfies (15), (19) and (20). 
It is noteworthy that alternative, but equivalent, forms are possible for W(z).  

Thus the square-root factors in the expression for W(x) may appear as ratios 
without affecting the general expression for W ( z )  (Muskhelishvili 1963, p. 237). 
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4. The solution for the complex potential w(z) 

of (12). Thus, 
The potential w(z)  is obtained from the reduced potential W(z) by integration 

w(z) = e- i"z(A +/:iaeircuW(u)du], (22) 

where A is an arbitrary real constant with respect to i. 
It may be verified that the form of (22) is such that condition (16) is satisfied. 
It remains to determine the constant A ,  and the constants B and C in the 

definition of W(z). 
Now the value of the complex velocity potential at a point z ( = z + iy) in the 

fluid is given by (22). It will be assumed, as mentioned in the introduction, that  
the circulation around the plate is zero, which implies that the potential is 
single-valued within the fluid. To satisfy this condition, it follows from (22) that  

n 

Rei $ eiKuW(u)du = 0, 
C 

where C is a closed contour surrounding L. 
If the path of integration is contracted onto L, this condition may be written 

(23) 
which determines B in terms of C. 

The remaining unknowns are determined by imposing conditions (9) and (10) 
on the solution (22). To do this, we required the behaviour of the integral in (22) 
as I zJ  --too in y B 0. 

Now W ( z )  is bounded at infinity and W ( z )  - C-t 0 as IzI +a. So 

ic: . 
K 

eiKwW(u) d u  = {:a eiKuW(u) d u  +jim eiG-"(W(u) - C>du - -- e*K*, (24) 

and the path of integration in the first integral on the right-hand side is indicated 
by the vertical dotted line in figure 1. As z-f + cx) along the path C+, the second 
integral on the right-hand side tends to  zero by Jordan's lemma, since 

W(z)-C- tO as Iz [  +a. 

If the path of integration along C- to z = - CQ is treated similarly, then the values 
obtained for the integral in (22) differ by a contour integral around L'. If this is 
contracted onto L', it follows that, for z+ & CQ, 

w(z) - e-i& { A  Ty+i(a-p+8)}- ( iC/K) ,  ( 2 5 )  

where y = Bu,(K) - C&K) +a,(K, P), (26) 

CL = Ba2(K) - Cai(K) +a2(K,  a))  (27) 

/3 = Ba3(K) - CU,"(K) + a3(K, F ) ,  (28) 
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and b, u) 
du, 

((242 - a2) ( 6 2  - U ” ) i  
a,(K, F )  = 

0 -  
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FIGURE 1. Path of integration for w(z) as z + co. 

and the nota,tion 
d2a,(K) 

dK2 
a@, 1) u,(K), u:(K) ~ (i = 1,2 ,3)  

is used. 
The expression for F(a,  b, u) from (32) withf(y) given by (18) may be expressed 

as combinations of complete elliptic integrals, but there would appear to be 
little advantage in doing this. 

Note that in the above notation, (32) may be written 

y ( - K )  = Ba,(-K)-Ga;(-K)+a,(-K,F) = 0. 

#(x, y) - { ( A  T y )  cos Kx + (a  - p + 6) sin Kx} eKv. 

(34) 

(35) 

Now from (25), as x+ & 00, 

It follows, by comparison of (35) with the desired behaviour as x+ k 00 given 

A = -jga,/g (36) 
by (9) and (lo), that 
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so that, as LC+ + 00, 

$(x, y) N - y ( K )  e fKx+Ku - (jgao/u) e- iKx+Eu,  

#(x, y) N ( y ( K )  - jgao/a) e- iKx+K?J,  and, as x --+ - m, 

and the solution is uniquely determined. 
Thus, after some algebra, it  may be shown that 

where 

(i = 1 ,  2 ) ,  
~ u:gL) a,( - K ,  F) 

A,i = 

Finally, @(x, y, t )  = Rej($(z, y) e-fd>, ( 46) 

where +(X,Y) = Re,{w(z)>t 

and w(z) is given by ( 2 2 )  with W ( z )  given by (21), and the constants A ,  B and C,  
by (34), (36) and (40). 

The velocity potential on the plate is 

Rej ($(O, $1 e - q ,  

where $-+(O,y) = ~- Jqao e K g  e K ” y (  - K ,  y), y on L, (47) 
- 

0- 

Note that y (  - R, - h )  = 0 and y( - K ,  - a )  = y( - K )  = 0 from condition (34). 

5. The forces and moments acting on the plate 
The first-order force and moment acting on the plate are obtained by inte- 

grating the linearized expression for the pressure around the boundary of the 
plate. 

We have 
m 

P ( X ,  Y, t )  = - P a t  (2, Y, t )  - PSY 
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so that the force per unit width of the plate is 

441 

= - Rej (2paj e-iut e K g  y( - K ,  y) d y ) , 
-b 

from (47) 

after integration by parts. 
Similarly, the first-order moment per unit width, about the origin, is 

2pgje-iut -a - 
{B- cyz +Ip(a, b, y))dy. (54) K 2  s -?J ((TJ2-a2) ( b 2 - y 2 ) ) i  

= Rej 

It is well known (Ogilvie 1963; Haskind 1948) that it is possible to predict the 
time-averaged second-order forces and moments acting on an oscillating body 
in waves purely from a knowledge of the first-order potential 0 .  Thus, the total 
force on the plate is given by integrating the exact expression for the pressure, 
namely, 

a 0 e x  
P ( Z ,  Y , t )  = -P  at -pgY - 4 IVQex. 1'9 

where is the exact velocity potential. 
The notation 

is used to denote time-averaged or mean quantities. It may be shown (Haskind 
1959, p. 780) that the mean second-order horizontal force and moment per unit 
width are given by 

where Q(x ,  y, t ) ,  the first-order velocity potential, satisfies 

@(x, y, t )  = Rej{$ e-fut). 

Now, 

and it may be shown that 

$ * ( O ,  y) = egg{ - jga ,b  * y( - K ,  Y)}, yon& 

-a d 
X(2)* = -pus, Im eggdy{e"Yy(-K,Y)}dY 

= - ipaa, Imj y ( K ) ,  (57) 

after integration by parts twice. 
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d 
Similarly, 

--a 
M(z)* = - p m ,  Imj j y e g u  - {egu y( - K ,  y)) dy 

- b  dY 

(59) 
--a u eKu 

)P -z, ((u”a2) (b2-uZ 
{B - Cu2 + F(a, b, u)} du. where y K ( K )  = 

Because of the presence of singularities in the velocity at  the ends of the plate, 
and the corresponding negatively infinite pressures there, it may be shown that 
a mean second-order vertical force acts on the plate. See, for example, Sedov 
(1965), from which it follows that this force is given by 

P = Y@)*( -a)  + Y(2)*( - b), (60) 

where 

and the modulus sign refers to the complex number j. 

shrink to zero finally. 
Here C, is a small contour surrounding the point z = ia, which is allowed to 

Similarlv, 

Now from (21) and (22) we have, near z = -ia, 

1 
( z  + ia)t ( - 2ia(b2 - a2)}4 

-- - dw 
dz 

x (B - Ca2 + F(a, b, a)]  + terms regular near z = - ia, (63) 

with a similar behaviour near z = -ib, so that 

being the contributions from the poles at x = - ia, - ib as the contours shrink to 
zero. 

6. Diffraction of waves by a fixed plate 
The general expressions derived above permit the forces and moments acting 

on a submerged vertical plate, which is making small oscillations in a train of 
incident waves of the same frequency, to be determined by computing certain 
algebraic combinations of integrals. 

In this paper, computations are restricted to a plate held fixed in a train of 
incident waves, in which case the results simplify considerably. 

Thus the amplitude of roll Bo is zero, so that 

f ( y )  = F(a, b, y) = S(K) = A2$ 0, 

whilst 
- 

A3 = al( - K ) .  
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It also follows from (23) that, if we write 

eKu(d2-a2) 
then 

which defines d2.  
/ : ( ( @ - a 2 )  (b2-u2))* du = 0, 

The expressions for a, P, and y simplify also and it is convenient to write 

where 

and a’, P‘, yH are defined similarly. 

1 
Then, from (37)) 

C =  jqao 
CT y’ - j ( d  - p’) . 

For the fixed plate it is convenient to define a reflexion coefficient R as the ratio 
of the amplitude of the reflected wave to the amplitude of the incident wave, at  
infinity, and a transmission coefficient T as the ratio of the amplitude of the 
transmitted wave to the amplitude of the incident wave, at infinity. 

Thus 

whilst 

where (4), (38), (39)) (46) and (70) have been used. 

in terms of tabulated functions when F(u, b, u) = 0. 
Equation (52) for the oscillatory first-order horizontal force may be integrated 

Thus, 

where k = (1 -,u2)i, p = u/b, K ( k ) ,  E ( k )  are the complete elliptic integrals of the 
first and second kind, respectively, and 

a‘ - p’ 
Y’ 

tans = -. 

In a similar manner, from (54), 

It is useful to determine the centre of pressure of the first-order force as a 
fraction of the plate length measured from the top edge downwards. Thus, we 
define the centre of pressure czl by the equation, 
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From (57) the second-order time-averaged horizontal force on the plate is 
simply 

The second-order time-averaged moment becomes 

(77) 

and the corresponding centre of pressure is 

(78) 
1 

K(b - a )  

Finally, the second-order mean vertical force given by (64), simplifies to 

(79) 
=PWo 

4K{yf2 + (a’ - p’)2} F =  

7. The limiting case a = 0 

It is of interest to examine the behaviour of the various expressions for R, T, 
etc., as the top edge of the plate approaches the free surface. The reason for this 
is twofold. First, it provides a check on the expressions, which may be compared 
to those derived by Ursell (1947) and Haskind (1948, 1959) for the problem of 
diffraction of waves by a vertical surface-piercing plate. Secondly, one might 
anticipate some non-uniformity in the limiting process, since the behaviour of 
the fluid near the top edge of the plate, even when it is only slightly submerged, 
differs markedly from the behaviour of the fluid at the intersection of the surface- 
piercing plate and the free surface. Thus, the velocity is unbounded near either 
edge of the plate, and this is true however small the gap between the top of the 
plate and the free surface. On the other hand, the velocity of the fluid in the case 
of the surface-piercing plate is bounded a t  the intersection of the plate and free 
surface. This fundamental difference ought to be exhibited in the mathematical 
behaviour of the solution as a+O. 

It is not difficult to show that this is indeed the case. Thus, as p( = a/b) + 0, 
we find that 

d2--fb2[1+ $n(l,(Kb) +L,(Kb))]/log (4/p), 

Y ’ W )  +b74(Kb) + ~(oogp)- l l ,  
a’( K )  + 7Td2 + O(p2), 

P ’ W )  +- bK,(Kb) + o((logP)-l), 

7%) +b2{fJo(Kb) -fJ,(Kb)L 

I r , (z)  = &r[Io(z) - LO(z)] = where 

7T 
&(z) = [Il(z) - L,(z)] = 
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Io, I, and KO, K ,  are modified Bessel functions of the first and second kind 
respectively, and Lo, L, are modified Struve functions (Watson 1940, p. 329). 

We thus have the following limiting values for R and T: 

nI,(Kb) 
= (nZ12,(Kb) + K;(Kb))t'  

K,(Kb) 
= (n212,(Kb) + K2,(Kb))V 

which agree with the values given by Ursell (1947). 

for p = 0, 
Now, as p+O, E(k)+l, K(k)+log(4/n), so that from (73), (74) and (75), 

- 2pga0bX,(Kb) cos (d - e) 
(7?12,(Kb) + K?(Kb)).II ' X q t )  = 

and 

where tane = K,(Kb)/rI,(Kb). 

It is easily seen from (76) that for p = 0, 

Also, from (77) and (79), 

and 

These limiting values of the first- and second-order forces and moments agree 
with those given by Haskind (1959). 

Finally, the vertical suction force increases without bound as p+ 0 and does 
not attain the negative value of the suction force on a surface-piercing barrier. 
This value is given by Haskind (1959) as 

which is the limiting value of (80) if the second term were zero. In  fact this term 
is not zero, but dominates the expression for small p, so that 

npgai{ 1 + KbX,( - Kb))2 
4Kb{n212,(Kb) + K?(Kb))p(log (4/p))2 

F - t  

as p+O. 
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8. Discussion of results 
In  figure 2,  curves are shown for the reflexion and transmission coefficients, 

R and T, as functions of Kb ( = u2b/g) for different values of p ( = a/b). The limiting 
case p = 0, when the plate intersects the free surface, is shown for comparison. In  
contrast to this case, for each finite p, R increases with increasing Kb until a 
maximum is reached and then decreases to zero for further increase in Kb. The 

FIGURE 2. Reflexion coefficient R and transmission coefficient T us. Kb 
for various p. -, R ;  - - --, T.  

physical explanation of the maximum in R is clear. For small values of Kb 
corresponding to an incident wave whose wavelength is large compared to the 
plate dimensions, the amount of reflexion is small, since the wave does not 
‘sense’ the presence of the plate. As Kb increases, the incident wavelength and 
the plate dimension become comparable, and R increases. At the other extreme, 
for large Kb, the incident waves are short and the wave energy is confined to a 
thin surface layer, and transmission through the gap above the barrier occurs. 
Thus for each finite value of p, R -+ 0 as Kb -+ co. Hence for some intermediate 
value of Kb, R must have a maximum. 

It is clear from the curves that a submerged plate is a poor reflector of wave 
energy. For example, for p = 0.25, R attains its maximum of about 0.18 when 
Kb = 1.7 indicating that less than 4 % of the wave energy is reflected for all 
wavelengths by a plate whose upper edge is submerged to one third of the total 
length of the plate. Even forp = 0.01, so that there is only a small gap between the 
top of the plate and the free surface compared to the length of the plate, T is never 
less than 0.68, which means that at  least 44 yo of the wave energy is transmitted 
through the gap, for all wavelengths. 
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Figure 3 shows the amplitude of the first-order horizontal oscillatory force on 
the plate as a function of Kb for various p including p = 0. It is noticeable how 
the sharp peak which occurs for p = 0 is reduced for fhite p. For instance, at  
p = 0-01 the maximum value of the force is only about 60 yo of its value a t  p = 0. 
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FIGURE 3. Amplitude of first-order horizontal force 
per unit width V.Y. Kb for various p. 

I I  

t 

0 1 .o 2.0 3.0 

Kb 

FIGURE 4. Centre of pressure of first-order oscillatory 
horizontal force cz’ vs. Kb for various p. 

In figure 4 the ordinate measures the position of the point of action, or centre 
of pressure, of the first-order oscillatory horizontal force, as a fraction of the 
plate length. For small values of Kb, the curves of c:), for various p, are indis- 
tinguishable from straight lines, although a slight curving towards the Kb axis 
is discernible for the larger values of Kb. This bending must take place, since for 
large Kb corresponding to short waves, the pressure will decay rapidly along the 
plate, and the force will act at  a point very close to the top edge. Thus as Kb +a, 
the curves tend asymptotically to zero. This also follows from a consideration 
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of (75) for large Kb. The values of  cg) at Kb = 0 were obtained analytically from 
(75). It may be shown that, as Kb-tO, 

1-4 , 4( 1 - +k2) P(k)  - (1 - k2)  - 3P2(k) 
l-&kZ-PP(k) 

where P(k)  = E(k) /K(k)  (p2 = 1 - k 2 ) ,  

which reduces to 41377 for p = 0, and, after some algebra, to 4 for ,U = 1. 
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FIGURE 5. Mean second-order horizontal force us. Kb for various p. 

Kb 

FIGURE 6. Point of action of mean second-order horizontal force us. Kb for various y. 

It appears from the curves that for all Kb, c$)+ as ,L+ 1, indicating that for 
a short plate, the force is more uniformly distributed over the length than for 
a long plate. The fact that the centre of pressure lies on the upper half of the 
plate is consistent with the decay of gravity waves with depth. 

Figure 5 shows the variation in the average second-order horizontal force as 
a function of Kb for various p. Once again it is remarkable the effect a small 
gap above the plate makes to the force on the plate. The point of action of this 
force (figure 6) fluctuates markedly for different Kb and always lies above the 
top edge of the submerged plate, since cg’ is negative. However, the centre of 
pressure of the total force is dominated by the first-order force which we have 
seen always acts through a point on the plate. 
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Finally, figure 7 indicates the variation of the average second-order vertical 
force on the plate arising from the square-root singularities in velocity near the 
edges of the plate, and the correspondingly unbounded negative pressures there. 
As p tends to  zero, the force increases without bound for finite Kb and does not 
tend to  the vertical suction force on a surface-piercing plate as given by Haskind, 
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FIGURE 7. Mean second-order vertical force V.S. KZ, for various p. 

and indicated in the curve for p = 0. As long as there is the smallest gap between 
the top of the plate and the free surface, there will be a suction force arising 
from the singularity in velocity there, but when the plate intersects the surface 
the contribution to the forces arises solely from the lower edge of the plate and 
is directed down into the fluid, as illustrated in figure 7. 

9. Conclusion 
Results are obtained for the diffraction of water waves by a submerged thin 

vertical plate. I n  particular, computations are made of the reflexion and trans- 
mission coefficients and the first- and second-order forces and their points of 
application, when a wave of prescribed amplitude and phase is incident upon 
the plate. With the exception of the mean second-order vertical force on the plate, 
the results agree with those obtained by Ursell (1947) and Haskind (1959) for 
the special case I(. = 0 when the plate intersects the free surface. 

Perhaps the most interesting feature of the results is their behaviour for small 
p corresponding to  a narrow gap between the top edge of the plate and the free 
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surface. Thus the reluctance of the curves for small p to approach the limiting 
curves p = 0 stems mathematically from the non-uniform behaviour of the 
solution as p+O. It has been shown that the solution for small p cannot be 
expanded in a power series in p about p = 0, but that the solution differs from 
the limiting case by a term of order (log (4/p))-l as p+ 0. As already mentioned, 
this singular perturbation reflects the basic difference in the structure of the 
flow for ,.a = 0 and p finite. Thus, for p = 0 the velocity is bounded near the top 
edge of the plate, which is now in the surface. On the other hand, for each finite p, 
however small, the velocity of the flow increases without bound for points 
arbitrarily close to the top edge of the plate. 

In this connexion might be mentioned some recent work by Tuck (1970), 
who uses an approximate method based on the technique of matched asymptotic 
expansions to estimate the transmission coefficient for surface waves incident 
upon a vertical wall containing a deeply submerged narrow slit. He finds that 
a high transmission coefficient is possible for long waves passing through the 
submerged slit, which compares with the high transmission coefficients obtained 
in the present problem when the plate is close to the surface. It is not clear from 
Tuck’s approximate solution why this should be so, and it is not possible to 
compare with the limiting cases solved by Dean (1945) or Ursell (1947) without 
violating the assumptions of this theory. It is possible that the exact solution, 
which may be obtained by the methods used in this paper, may provide the 
explanation. 

The curves for very small p must be treated with reservation since the linear 
theory is clearly not valid if the depth of submergence is comparable to the 
amplitude of the incident wave. Also, the infinite velocities predicted by the 
present linearized treatment will not occur in practice, of course. The behaviour 
of the flow near the plate will be influenced greatly by viscosity, which has been 
ignored in the present model, and vortices will be generated a t  the edges of the 
plate due to the oscillatory flow past the sharp edges. 

This work was carried out while the author was a visitor in the Department 
of Naval Architecture and Marine Engineering at  Massachusetts Institute of 
Technology, from September 1968 to July 1969. 
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